Innovative methods and technologies are essential for accelerating basic cancer research and translating those discoveries into tomorrow’s patient care. With the goal of encouraging innovation, IMAT supports the development of next-generation analytical methods and tools that have the potential to revolutionize the way cancer research is pursued.

Technology Development Pipeline

- **Concept**: Feasibility/Proof-of-principle study
- **Prototyping & Feasibility Demonstration**: Highly innovative technology
- **Advanced Development toward Context of Use**: No preliminary data required
- **Scaling/Optimization within Context of Use**: Advanced development
- **Hardening & Validation**: Demonstration of transformative utility
- **Dissemination**: Requires proof of feasibility

Project Funding
- **R61**: Up to $150k per year for up to 3 years
- **R33**: Up to $300k per year for up to 3 years
- **R01, U01, U54, P01, P50, U2C**: Up to $150k per year for up to 2 years

Unique Review
Reviews conducted by a diverse panel of experts that reflect the technical breadth of applications and varied needs in cancer research with consideration for the high risk tolerance of the IMAT program.

High Innovation, High Impact
Encourages development of novel technologies involving a high degree of technical innovation that could have substantial potential impact on cancer research or clinical care.
Funding from the IMAT program has enabled us to pursue out-of-the-box ideas to develop a culture platform that supports the ex vivo preservation of patient-derived multiple myeloma cells. We hope that this technological approach will be implemented in the future as a transformative means for pre-clinical and personalized drug evaluation to accelerate therapeutic discoveries and improve patient care.

JENNY ZILBERBERG, PHD
Senior Principal Scientist at Imvax, Inc.

IMAT supports over 100 projects at any given time from diverse scientific fields. Support from the IMAT program has advanced hundreds of cancer-relevant technologies like those developed by the IMAT grantees below.

KIRK HANSEN, PHD
Associate Professor of Biochemistry and Molecular Genetics at the University of Colorado

The IMAT program has allowed us to develop methods that advance extracellular matrix analysis to obtain a detailed view of the tumor microenvironment. Measurements are revealing a level of complexity beyond what was anticipated and insights into metastasis and dormancy. These findings are creating a better understanding of cancer and new strategies for treatment.

For more information, please contact Tony Dickherber or Kelly Crotty:

imat.cancer.gov
anthony.dickherber@nih.gov
kelly.crotty@nih.gov
301-547-9980
240-255-0917