CONTINUOUS CHROMOSOME SORTING WITH MICRO/NANOFLUIDICS


Year of Award:
2007
Award Type:
R41
Project Number:
CA128782
RFA Number:
RFA-CA-07-011
Technology Track:
Biospecimen Science Technologies
PI/Project Leader:
CAO, HAN
Other PI or Project Leader:
N/A
Institution:
BIONANOMATRIX, INC.
Single molecule analysis of long, genomic DNA will provide greater knowledge of genomic structural aberrations/variations and improved understanding of their association with cancer. The long-term goal of this project is to develop a fully integrated chip and reader capable of single molecule analysis of large native state genomic material. The anticipated embodiment will permit direct visualization and analysis of chromosomal and megabase fragments of DNA extracted directly from a sample (possibly a single cell) with sub-kilobase resolution. Furthermore, the chip will accommodate massively parallel analyses of individual DNA molecules in a high- throughput manner thus providing statistically relevant data in a timely fashion. As most disease related loci are located on specific chromosomes, it is of great value to be able to pre-sort them prior to further single molecule level analysis in nanofluidics. In order to help reach this objective, we propose investigating the possibility of integrating microfluidic particle sorting technology developed under Prof Sturm at Princeton University with BioNanomatrix's nanofluidic DNA analysis technology. A micro/nanofluidic standardized platform based on continuous sample analysis in massive parallel fashion could dramatically reduce the cost and serve as a basis for consistent, high-throughput genomic analyses in future patient care.